

Building with conscience.

PCR Identification	PCR for Architectural Coatings: NAICS 325510 on the basis of ISO 21930: 2017, NSF International, 2017. Valid through June 30, 2024						
	Thomas P. Gloria, Ph.D.						
PCR Review was conducted by	Bill Stough						
	Michael Overcash, Ph.D.						
Product Category	Exterior Coating						
	Sto Corp.						
Manufacturer's name	3800 Camp Creek Parkway SW, Building 1400, Suite 120						
ividifulacturer stidifie	Atlanta, GA 30331						
	<u>www.stocorp.com</u> (800) 221-2397						
	Epsten Group, a Salas O'Brien Company						
EPD program operator	101 Marietta St NW Suite 2600						
El D plogram operator	Atlanta, GA 30303						
	www.epstengroup.com						
Declaration Number	01-009						
Date of Certification	August 21,, 2024						
Period of Validity	5 years from date of certification						
Functional Unit	One square meter of covered and protected substrate for 60 years						
Market-base life / Design life used in assessment	10 Years / 5 Years						
System based life used in assessment	40 Years						
Test method employed for determination of design life	Product default warranty						
Amount of colorant needed	See Table 3						
Overall Data Quality Assessment Score	Good						
Site(s) in which the results of the LCA are representative	STO manufacturing sites in Atlanta, GA; Glendale, AZ; and Rutland, VT						
Information on where explanatory material can be obtained	See references at the end of this document.						
LCA Software and Version Number	LCA for Experts (formerly GaBi) 10.7						
LCI Database and Version Number	MLC (formerly GaBi) Database Version 2023.2						
This declaration was independently verified in accordance with							
ISO 21930:2017, ISO 14025: 2006 and the reference PCR:	Megan Blizzard Megan Blizzard Megan Blizzard						
PCR for Architectural Coatings: NAICS 325510	Megan.Blizzard@salasobrien.com						
□ Internal □ External							
This life cycle assessment was conducted in accordance with ISO21930:2017, ISO 14044 and the reference PCR by:	WAP Sustainability Consulting, LLC						
This life cycle assessment was independently verified in accordance with ISO 21930:2017, ISO 14044 and the reference PCR	Angela Fisher, Aspire Sustainability angela@aspiresustainability.com						

Comparability

In order to support comparative assertions, this EPD meets all comparability requirements stated in ISO 14025:2006. However, differences in certain assumptions, data quality, and variability between LCA data sets may still exist. As such, caution should be exercised when evaluating EPDs from different manufacturers, as the EPD results may not be entirely comparable. Any EPD comparison must be carried out at the building level per ISO 21930 guidelines. The results of this EPD reflect an average performance by the product and its actual impacts may vary on a case-to-case basis.

Company

We believe in 'Building with conscience'.

That means ensuring that all building products are not only safe, effective and easy to install, but also environmentally responsible and sustainable. We know you're always looking for the smartest and newest technology to create energy efficient buildings with superior aesthetics.

That's exactly what our products help you achieve. Products like our wall systems, coatings and finishes are consistent favorites among design professionals, contractors and property owners alike. Whatever your needs or vision may be, we offer products for every type of building project; whether it's new construction, restoration or panelization, commercial or residential work.

An architect or specifier focuses on aesthetics and feasibility, a contractor needs products that are easy to work with, and a building owner requires high value and low costs on properties. Sto understands these unique needs, and delivers the smart, innovative materials and solutions that make this all possible. That's why Sto remains the innovative leader in integrated exterior wall systems.

When you combine that commitment to product support and innovation with value-added offerings like consultative design and color services through Sto Studio or training in proper application techniques through the Sto Institute, you get an integrated exterior wall system solution unmatched in the industry.

Manufacturing Sites Covered in this EPD

Atlanta Plant

Glendale Plant

Rutland Plant

Product Identification

Stolit® Lotusan® finishes are offered in various coarseness and color bases that allow more freedom in building exterior designing and finishing. Table 1 lists the products declared in this EPD.

Table 1: List of Stolit® Lotusan® Products

Product Name	Product Number	Base Type	Finish Type
Stolit [®] Lotusan [®] 1.0	80190	Tintable White	Fine
Stolit® Lotusan® 1.0 Dark Colors	82190	Deep	Fine
Stolit® Lotusan® 1.5	80191	Tintable White	Medium
Stolit® Lotusan® 1.5 Dark Colors	82191	Deep	Medium
Stolit® Lotusan® Freeform	80193	Tintable White	Freeform
Stolit® Lotusan® Freeform Dark Colors	82193	Deep	Freeform



Product Description

Stolit® Lotusan® is a series of ready mixed, textured wall coating with Lotus-Effect® technology that mimics the self-cleaning capabilities of the lotus leaf. Stolit® Lotusan® with Lotus-Effect® technology is designed for use as a finish coating over prepared vertical above-grade concrete, masonry or plaster substrates and in StoTherm® Lotusan® Wall Claddings including StoTherm® ci Lotusan®. In this study, Lotusan® 1.0, 1.5 and Freeform are included. Same as Stolit®, two tint bases are offered.

Performance Features

Material Composition

The material compositions of Stolit® Lotusan® are listed below:

Table 2: Material composition for Stolit[®] Lotusan[®]

Tuble 2: Material composition for Stone Lotusum											
	Stolit® Lotusan® 1.0 Dark Colors	Stolit® Lotusan® 1.0	Stolit® Lotusan® 1.5 Dark Colors	Stolit® Lotusan® 1.5	Stolit® Lotusan® Freedom Dark Colors	Stolit® Lotusan® Freedom					
Acrylic Polymer	5%	0.05	0.05	5%	5%	5%					
Polyurethane	<1%	<1%	<1%	<1%	<1%	<1%					
HDPE	<1%	<1%	<1%	<1%	<1%	<1%					
Water	16%	0.15	0.16	15%	17%	17%					
Colorant	1%	0.01	0.01	1%	1%	2%					
Mineral fillers*	50%	0.49	0.5	50%	61%	60%					
Silica	22%	0.22	0.21	22%	8%	9%					
Surfactant	<1%	<1%	<1%	<1%	<1%	<1%					
Silicate	3%	0.03	0.03	3%	3%	3%					
Additive**	5%	0.05	0.05	5%	5%	5%					

^{*}Mineral fillers include limestone, dolomite, etc.

^{**}Additives include light stabilizer, plasticizer, biocide, etc.

Components related to Life Cycle Assessment

The functional unit for the LCA study was covering and protecting 1 square meter (m²) of substrate for a period of 60 years—the assumed lifetime of a building. The reference flow required for the functional unit is calculated based on the product lifespan scenarios prescribed in the PCR. The market-based lifetime is 10 years, and the design lifetime is determined either based on quality

determined by ASTM tests or on the product warrant. The EPD provides an additional lifetime scenario where the declared products are installed as a component of the wall system. This service life is estimated at 40 years based on combined data from performance studies on Sto's wall systems, past life cycle assessments of Sto's wall systems, and EPDs published by Sto in Europe (Frauenhofer IBP, 2015; BTY Group, 2001; Sto SE & Co. KGaA and Sto Scandinavia AB, 2020). The reference flow required for one functional unit is provided in Table 3 for each lifetime.

Table 3: Reference flow by lifetime used

	Func- tional Unit	Reference Flow [kg]	Tint needed* [kg]	Reference Flow [kg]	Tint needed* [kg]	Reference Flow [kg]	Tint needed* [kg]	
Lifespan		Design Lifet	ime [5 years]		ed Lifetime [10 ars]	System-based Lifetime [40 years]		
Stolit [®] Lotusan [®] 1.0 Dark Colors	1	29.2	2.60	14.6	1.30	3.65	0.325	
Stolit® Lotusan® 1.0	1	29.2	0.770	14.6	0.380	3.65	0.0958	
Stolit [®] Lotusan [®] 1.5 Dark Colors	1	33.6	3.00	16.8	1.50	4.20	0.374	
Stolit® Lotusan® 1.5	1	33.6	0.880	16.8	0.440	4.20	0.110	
Stolit [®] Lotusan [®] Freeform Dark Colors	1	52.3	4.66	26.2	2.33	6.54	0.583	
Stolit® Lotusan® Freeform	1	52.3	1.37	26.2	0.690	6.54	0.172	

Scope and Boundaries of the Life Cycle Assessment

The LCA was performed in accordance with ISO 14040 standards. The study is a cradle-to-grave LCA and includes the following life stages as prescribed in the PCR.

Pro	oducti	on	Cons	struct on	Use End of Life						Benefits & Loads Beyond System Boundary					
A1	A 2	А3	A4	A5	B1	B2	ВЗ	B4	B5	В6	В7	C1	C2	СЗ	C4	D
Raw Material Supply	Transport	Manufacturing	Transport to Site	Assembly/Install	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy Use	Operational Water Use	Deconstruction	Transport	Waste Processing	Disposal	Reuse, Recovery, Recycling Potential
X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	ND

X = Module Included in LCA Report, ND = Module not Declared

Figure 1: Life stages for the cradle-to-grave LCA

Cut-off Criteria

Material inputs greater than 1% (based on total mass of the final product) were included within the scope of analysis. Material inputs less than 1% were included if sufficient data was available to warrant inclusion and/or the material input was thought to have significant environmental impact. Cumulative excluded material inputs and environmental impacts are less than 5% based on total weight of the functional unit.

Data Quality

The overall data quality level was determined to be good. Primary data was collected from Sto's facilities in Atlanta, GA, Glendale, AZ and Rutland, VT for the 2021 reference year. When primary data did not exist, secondary data were obtained from the MLC Database Service. Overall, both primary and secondary data are considered good quality in terms of geographic, temporal and technological coverage.

Estimates and Assumption

Assumptions were made to represent the cradle-to-grave environmental performance of Sto's products. These assumptions were made in accordance with the PCR and include the transportation distances, the disposal of packaging material and the product at its end of life and use phase assumptions.

Allocation

General principles of allocation were based on ISO 14040/44. Where possible, allocation was avoided. When allocation was necessary it was done on a physical mass basis.

Product Stage (A1-A3)

Stolit® Lotusan® is produced at Sto's Atlanta, GA, Glendale, AZ and Rutland, VT facilities. This stage includes an aggregation of raw material extraction, supplier processing, delivery, manufacturing and packaging by Sto. Stolit® Lotusan® is supplied in 5-gallon pails.

Delivery and Installation Stage (A4-A5)

The design and construction process stage starts with the packaged product leaving the production site and ends with being delivered to the application site.

During this stage, the finished product is moved from a shipping dock for distribution. The end gate is the application site after the purchaser acquires the finished product and transports it to the application site.

The installation stage begins when the user prepares the product before applying it to a substrate and ends with any leftover coating and discarded packaging entering the end-of-life stage. Detailed application instructions are provided online. The application procedure includes mixing and applying. As recommended, an electric drill/mixer and a spray pump are assumed to be used for mixing and application. The equipment is not included in the study as these are multi-use tools and the impacts per declared unit is considered negligible, but electricity to power application tools has been included.

As prescribed in the PCR, 10% of the wet mass of Stolit® is assumed to be unused and properly disposed of. Other than VOC emissions, no other direct emissions to soil and water.

Table 4: Transport to Building Site (A4)

Property	Stolit Lotusan
Vehicle Type	Heavy Heavy-duty Diesel Truck / 53,333 lb payload - 8b
Fuel Efficiency [L/100km]	42
Fuel Type	Diesel
Distance [km]	9.93E+02
Capacity Utilization [%]	67%
	Lotusan 1.0 – 2.53E+00
Weight of Products Transported [kg]	Lotusan 1.5 – 2.91E+00
	Lotusan Freeform- 4.53E+00
Product Density [kg/m³]	1.65E+03
Capacity utilization volume factor	=1

Table 5: Installation Scenario Details (A5)

>>

Use Stage (B1-B7)

This stage contains all of the energy, water, and materials related to the use of the product, including cleaning, maintenance, and replacements. Stolit Lotusan does not require any energy or material for providing its functions. The reference service life of the product is 40 years. This service life scenario is valid only when the product is used as intended in Sto's proprietary engineerd wall system assemblies. The referenced PCR also prescribes two service life scenarios – design life and market-based life. The details are in Table 6.

Table 6: Replacement Scenario Details

Product	Stolit Lotusan
ESL [years]	60
Design Life [years]*	5
Replacement (Design Life)	11
Market-based Life [years]*	10
Replacement (Market-based Life)	5
System-based Life [years]*	40
Replacement (System-based Life)	0.5

^{*} Design life and market-based lifetime are both reference service lifetime scenarios required by the architectural Coating PCR. The system-based lifetime scenario is included as additional information.

End-of-Life Stage (C1-C4)

In this stage, the disposal of installation waste, packaging waste and product waste at its end of life is included. The disposal pathway of each waste stream is modeled based on the recommendation of PCR and US EPA's 2018 waste management fact sheet.

Table 7:

	Tubic 7.		
Waste Flow	Recycling	Incinera- tion	Land- filling
Paper Packaging	68.2%	5.72%	26.1%
Steel Packaging	34.1%	11.9%	54.0%
Plastic Packaging	8.70%	16.4%	74.9%
Unused Product	0%	0%	100%
Post-Consumer Product	0%	0%	100%

Life Cycle Assessment Results

As prescribed by the PCR, TRACI 2.1 impact characterization methodology and IPCC 5th assessment report are adopted to calculate the environment impacts. Table 4 provides the acronym key of the impact indicators declared in this EPD.

	Table 8: LCIA impact category and LCI Indicator keys	
Abbreviation	Parameter	Unit
	IPCC AR5	
GWP	Global warming potential (100 years, includes biogenic CO2)	kg CO₂ eq
	TRACI 2.1	
AP	Acidification potential of soil and water	kg SO₂ eq
EP	Eutrophication potential	kg N eq
ODP	Depletion of stratospheric ozone layer	kg CFC 11 eq
SFP	Smog formation potential	kg O₃ eq
	CML 2001-Jan 2016	
ADPF	Abiotic depletion potential for fossil resources	MJ, net calorific value
	Carbon Emissions and Uptake	
BCRP	Biogenic Carbon Removal from Product	[kg CO ₂]
ВСЕР	Biogenic Carbon Emission from Product	[kg CO ₂]
BCRK	Biogenic Carbon Removal from Packaging	[kg CO ₂]
ВСЕК	Biogenic Carbon Emission from Packaging	[kg CO ₂]
BCEW	Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes	[kg CO ₂]
CCE	Calcination Carbon Emissions	[kg CO ₂]
CCR	Carbonation Carbon Removals	[kg CO ₂]
CWNR	Carbon Emissions from Combustion of Waste from Non- Renewable Sources used in Production Processes	[kg CO ₂]
	Resource Use Parameters	
RPR_{E}	Use of renewable primary energy excluding renewable primary energy resources used as raw materials	MJ, net calorific value (LHV)
RPR_M	Use of renewable primary energy resources used as raw materials	MJ, net calorific value
NRPR _E	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ, net calorific value
$NRPR_M$	Use of non-renewable primary energy resources used as raw materials	MJ, net calorific value

SM	Use of secondary materials	kg
RSF	Use of renewable secondary fuels	MJ, net calorific value
NRSF	Use of non-renewable secondary fuels	MJ, net calorific value
RE	Recovered energy	MJ, net calorific value
FW	Net use of fresh water	m³
	Waste Parameters	
HWD	Disposed-of-hazardous waste	kg
NHWD	Disposed-of non-hazardous waste	kg
HLRW	High-level radioactive waste, conditioned, to final repository	kg
ILLRW	Intermediate- and low-level radioactive waste, conditioned, to final repository	kg
CRU	Components for reuse	kg
MR	Materials for recycling	kg
MER	Materials for energy recovery	kg
EEE	Exported electrical energy	MJ
EET	Exported thermal energy	MJ

Stolit® Lotusan® 1.0 Dark Colors

The LCIA results presented below are for 1 m² of Stolit Lotusan 1.0 Dark Colors for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Cate- gory	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	В5	В6	В7	C1	C2	C3	C4
IPCC AR5																
GWP [kg CO ₂ eq]	2.09E+00	1.74E-01	7.41E-01	0	0	0	3.31E+01	1.50E+01	1.50E+00	0	0	0	0	5.71E-03	0	5.03E-02
TRACI LCIA Impacts (North America)																
AP [kg SO₂ eq]	8.91E-03	8.52E-04	1.97E-03	0	0	0	1.29E-01	5.86E-02	5.86E-03	0	0	0	0	1.69E-05	0	2.59E-04
EP [kg N eq]	2.14E-01	1.40E-02	9.73E-02	0	0	0	3.58E+00	1.63E+00	1.63E-01	0	0	0	0	4.61E-04	0	2.88E-03
ODP [kg CFC 11 eq]	2.87E-11	4.43E-16	2.90E-12	0	0	0	3.48E-10	1.58E-10	1.58E-11	0	0	0	0	1.46E-17	0	2.40E-15
SFP [kg O₃ eq]	1.20E-01	1.97E-02	2.04E-01	0	0	0	3.78E+00	1.72E+00	1.72E-01	0	0	0	0	3.87E-04	0	4.73E-03
							CML 20	01-Jan 2016								
ADPF [MJ]	3.85E+01	2.40E+00	1.67E+01	0	0	0		2.88E+02		0	0	0	0	7.91E-02	0	7.58E-01
						(Carbon Emiss	sions and Up	otake							
BCRP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCRK [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEK [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEW [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCE [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CWNR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The LCI results presented below are for 1 m² of Stolit Lotusan 1.0 Dark Colors for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Category	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	С3	C4
							Resourc	e Use Indica	ntors							
RPR _E [MJ]	8.03E+00	9.63E-02	1.55E+00	0	0	0	1.06E+02	4.84E+01	4.84E+00	0	0	0	0	3.18E-03	0	9.17E-02
RPR _M [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRPR _E [MJ]	3.55E+01	2.42E+00	1.75E+00	0	0	0	4.36E+02	1.98E+02	1.98E+01	0	0	0	0	7.98E-02	-	7.83E-01
NRPR _M [MJ]	3.53E+00	0	7.76E+00	0	0	0	1.24E+02	5.64E+01	5.64E+00	0	0	0	0	0	0	0
SM [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RE [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW [m ³]	1.76E-02	3.30E-04	4.69E-03	0	0	0	2.49E-01	1.13E-01	1.13E-02	0	0	0	0	1.09E-05	0	9.70E-05
						C	utput Flows	and Waste	Categories							
HWD [kg]	1.04E-09	6.95E-12	-4.71E-	0	0	0	6.37E-09	2.90E-09	2.90E-10	0	0	0	0	2.29E-13	0	1.95E-11
NHWD [kg]	3.79E-01	2.10E-04	3.34E-01	0	0	0	7.84E+00	3.56E+00	3.56E-01	0	0	0	0	6.94E-06	0	2.34E+00
HLRW [kg]	1.42E-06	8.22E-09	2.19E-07	0	0	0	1.82E-05	8.26E-06	8.26E-07	0	0	0	0	2.71E-10	0	9.68E-09
ILLRW [kg]	1.41E-03	6.92E-06	2.14E-04	0	0	0	1.80E-02	8.17E-03	8.17E-04	0	0	0	0	2.28E-07	0	8.66E-06
CRU [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MR [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MER [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE [MJ]	2.11E-02	0	1.13E-01	0	0	0	1.48E+00	6.73E-01	6.73E-02	0	0	0	0	0	0	0

Stolit® Lotusan® 1.0

The LCIA results presented below are for 1 m² of Stolit Lotusan 1.0 for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

THE LCIA I	esuits pies	enteu beio	w are for 1	111 01 3101	iit Lutusaii	1.0 101 00	years. Thr	ee meume	scenarios a	ile presen	teu ioi iiic	dule of re	placeffie	III (D4).		
Impact Cate- gory	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	C3	C4
							IPO	CC AR5								
GWP [kg CO ₂ eq]	2.13E+00	1.74E-01	4.07E-01	0	0	0	2.99E+01	1.36E+01	1.36E+00	0	0	0	0	5.37E-03	0	4.73E-02
						TRA	ACI LCIA Impa	cts (North A	merica)							
AP [kg SO₂ eq]	1.18E-02	8.52E-04	1.58E-03	0	0	0	1.57E-01	7.12E-02	7.12E-03	0	0	0	0	1.59E-05	0	2.44E-04
EP [kg N eq]	2.04E-01	1.40E-02	4.56E-02	0	0	0	2.90E+00	1.32E+00	1.32E-01	0	0	0	0	4.34E-04	0	2.71E-03
ODP [kg CFC 11 eq]	2.76E-11	4.43E-16	2.77E-12	0	0	0	3.34E-10	1.52E-10	1.52E-11	0	0	0	0	1.38E-17	0	2.26E-15
SFP [kg O₃ eq]	1.12E-01	1.97E-02	1.99E-01	0	0	0	3.64E+00	1.66E+00	1.66E-01	0	0	0	0	3.64E-04	0	4.45E-03
							CML 200	01-Jan 2016								
ADPF [MJ]	3.79E+01	2.40E+00	7.74E+00	0	0	0	5.28E+02	2.40E+02	2.40E+01	0	0	0	0	7.45E-02	0	7.14E-01
						(Carbon Emiss	sions and Up	take							
BCRP [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCRK [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEK [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEW [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCE [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CWNR [kg CO ₂]	8.52E-02	0	8.52E-03	0	0	0	1.03E+00	4.69E-01	4.69E-02	0	0	0	0	0	0	0

The LCI results presented below are for 1 m² of Stolit Lotusan 1.0 for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Category	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	B7	C1	C2	С3	C4
							Resourc	e Use Indica	tors							
RPR _E [MJ]	8.00E+00	9.63E-02	1.02E+00	0	0	0	1.00E+02	4.56E+01	4.56E+00	0	0	0	0	2.99E-03	0	8.63E-02
RPR _M [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRPR _E [MJ]	3.51E+01	2.42E+00	3.15E+00	0	0	0	4.48E+02	2.04E+02	2.04E+01	0	0	0	0	7.51E-02	0	7.37E-01
NRPR _M [MJ]	3.41E+00	0	2.52E+00	0	0	0	6.52E+01	2.96E+01	2.96E+00	0	0	0	0	0	0	0
SM [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RE [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW [m ³]	1.81E-02	3.30E-04	2.72E-03	0	0	0	2.32E-01	1.06E-01	1.06E-02	0	0	0	0	1.03E-05	0	9.13E-05
						O	utput Flows	and Waste	Categories							
HWD [kg]	1.05E-09	6.95E-12	-6.24E-	0	0	0	1.10E-08	4.98E-09	4.98E-10	0	0	0	0	2.16E-13	0	1.84E-11
NHWD [kg]	4.82E-01	2.10E-04	3.42E-01	0	0	0	9.07E+00	4.12E+00	4.12E-01	0	0	0	0	6.53E-06	0	2.20E+00
HLRW [kg]	1.46E-06	8.22E-09	1.62E-07	0	0	0	1.80E-05	8.17E-06	8.17E-07	0	0	0	0	2.55E-10	0	9.11E-09
ILLRW [kg]	1.44E-03	6.92E-06	1.60E-04	0	0	0	1.77E-02	8.06E-03	8.06E-04	0	0	0	0	2.15E-07	0	8.15E-06
CRU [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MR [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MER [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE [MJ]	1.94E-01	0	1.31E-01	0	0	0	3.57E+00	1.62E+00	1.62E-01	0	0	0	0	0	0	0

Stolit® Lotusan® 1.5 Dark Colors

The LCIA results presented below are for 1 m² of Stolit Lotusan 1.5 Dark Colors for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Cate- gory	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	C3	C4
							IPO	CC AR5								
GWP [kg CO ₂ eq]	2.38E+00	2.00E-01	8.50E-01	0	0	0	3.77E+01	1.71E+01	1.71E+00	0	0	0	0	6.57E-03	0	5.79E-02
						TRA	CI LCIA Impa	cts (North A	America)							
AP [kg SO ₂ eq]	9.94E-03	9.80E-04	2.23E-03	0	0	0	1.45E-01	6.58E-02	6.58E-03	0	0	0	0	1.95E-05	0	2.99E-04
EP [kg N eq]	2.32E-01	1.61E-02	1.11E-01	0	0	0	3.95E+00	1.79E+00	1.79E-01	0	0	0	0	5.31E-04	0	3.32E-03
ODP [kg CFC 11 eq]	3.22E-11	5.10E-16	3.26E-12	0	0	0	3.90E-10	1.77E-10	1.77E-11	0	0	0	0	1.68E-17	0	2.77E-15
SFP [kg O₃ eq]	1.27E-01	2.27E-02	2.34E-01	0	0	0	4.21E+00	1.91E+00	1.91E-01	0	0	0	0	4.45E-04	0	5.44E-03
							CML 20	01-Jan 2016								
ADPF [MJ]	4.27E+01	2.76E+00	1.90E+01	0	0	0	7.10E+02	3.23E+02	3.23E+01	0	0	0	0	9.11E-02	0	8.73E-01
						(Carbon Emiss	sions and Up	otake							
BCRP [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEP [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCRK [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEK [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEW [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCE [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CWNR [kg CO₂]	9.81E-02	0	9.81E-03	0	0	0	1.19E+00	5.39E-01	5.39E-02	0	0	0	0	0	0	0

The LCI results presented below are for 1 m² of Stolit Lotusan 1.5 Dark Colors for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Category	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	С3	C4
							Resourc	e Use Indica	itors							
RPR _E [MJ]	9.08E+00	1.11E-01	1.76E+00	0	0	0	1.20E+02	5.48E+01	5.48E+00	0	0	0	0	3.66E-03	0	1.05E-01
RPR _M [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRPR _E [MJ]	3.93E+01	2.78E+00	1.86E+00	0	0	0	4.83E+02	2.20E+02	2.20E+01	0	0	0	0	9.18E-02	0	9.01E-01
NRPR _M [MJ]	4.01E+00	-	8.92E+00	0	0	0	1.42E+02	6.47E+01	6.47E+00	0	0	0	0	0	0	0
SM [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RE [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW [m ³]	2.02E-02	3.80E-04	5.39E-03	0	0	0	2.85E-01	1.30E-01	1.30E-02	0	0	0	0	1.25E-05	0	1.12E-04
						0	utput Flows	and Waste	Categories							
HWD [kg]	1.19E-09	8.00E-12	-5.43E-	0	0	0	7.24E-09	3.29E-09	3.29E-10	0	0	0	0	2.64E-13	0	2.25E-11
NHWD [kg]	4.26E-01	2.42E-04	3.83E-01	0	0	0	8.91E+00	4.05E+00	4.05E-01	0	0	0	0	7.99E-06	0	2.69E+00
HLRW [kg]	1.63E-06	9.46E-09	2.51E-07	0	0	0	2.07E-05	9.43E-06	9.43E-07	0	0	0	0	3.12E-10	0	1.11E-08
ILLRW [kg]	1.61E-03	7.97E-06	2.45E-04	0	0	0	2.05E-02	9.33E-03	9.33E-04	0	0	0	0	2.63E-07	0	9.96E-06
CRU [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MR [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MER [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE [MJ]	2.23E-01	0	1.50E-01	0	0	0	4.11E+00	1.87E+00	1.87E-01	0	0	0	0	0	0	0

Stolit® Lotusan® 1.5

The LCIA results presented below are for 1 m² of Stolit Lotusan 1.5 for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

THE LCIA I	esuits pies	enteu beio	w are for 1	111 01 3101	iit Lutusaii	1.5 101 00	years. Thr	ee meume	scenarios a	ile presen	teu ioi iiic	dule of re	piaceine	III (D4).		
Impact Cate- gory	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	C3	C4
							IPO	CC AR5								
GWP [kg CO ₂ eq]	2.44E+00	2.00E-01	4.67E-01	0	0	0	3.42E+01	1.55E+01	1.55E+00	0	0	0	0	6.18E-03	0	5.45E-02
						TRA	ACI LCIA Impa	cts (North A	merica)							
AP [kg SO₂ eq]	1.35E-02	9.80E-04	1.81E-03	0	0	0	1.79E-01	8.13E-02	8.13E-03	0	0	0	0	1.83E-05	0	2.81E-04
EP [kg N eq]	2.34E-01	1.61E-02	5.24E-02	0	0	0	3.33E+00	1.51E+00	1.51E-01	0	0	0	0	4.99E-04	0	3.12E-03
ODP [kg CFC 11 eq]	3.13E-11	5.10E-16	3.14E-12	0	0	0	3.79E-10	1.72E-10	1.72E-11	0	0	0	0	1.58E-17	0	2.60E-15
SFP [kg O₃ eq]	1.29E-01	2.27E-02	2.29E-01	0	0	0	4.19E+00	1.90E+00	1.90E-01	0	0	0	0	4.19E-04	0	5.12E-03
							CML 200	01-Jan 2016								
ADPF [MJ]	4.33E+01	2.76E+00	8.88E+00	0	0	0	6.05E+02	2.75E+02	2.75E+01	0	0	0	0	8.57E-02	0	8.21E-01
						(Carbon Emiss	sions and Up	take							
BCRP [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCRK [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEK [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEW [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCE [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CWNR [kg CO ₂]	9.81E-02	0	9.81E-03	0	0	0	1.19E+00	5.39E-01	5.39E-02	0	0	0	0	0	0	0

The LCI results presented below are for 1 m² of Stolit Lotusan 1.5 for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Category	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	С3	C4
							Resourc	e Use Indica	itors							
RPR _E [MJ]	9.16E+00	1.11E-01	1.17E+00	0	0	0	1.15E+02	5.22E+01	5.22E+00	0	0	0	0	3.44E-03	0	9.93E-02
RPR _M [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRPR _E [MJ]	4.03E+01	2.78E+00	3.60E+00	0	0	0	5.13E+02	2.33E+02	2.33E+01	0	0	0	0	8.64E-02	0	8.48E-01
NRPR _M [MJ]	3.87E+00	0	2.90E+00	0	0	0	7.45E+01	3.38E+01	3.38E+00	0	0	0	0	0	0	0
SM [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RE [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW [m³]	2.07E-02	3.80E-04	3.12E-03	0	0	0	2.66E-01	1.21E-01	1.21E-02	0	0	0	0	1.18E-05	0	1.05E-04
						0	utput Flows	and Waste	Categories							
HWD [kg]	1.21E-09	8.00E-12	-7.22E-	0	0	0	1.26E-08	5.71E-09	5.71E-10	0	0	0	0	2.48E-13	0	2.11E-11
NHWD [kg]	5.52E-01	2.42E-04	3.94E-01	0	0	0	1.04E+01	4.73E+00	4.73E-01	0	0	0	0	7.52E-06	0	2.54E+00
HLRW [kg]	1.67E-06	9.46E-09	1.85E-07	0	0	0	2.05E-05	9.30E-06	9.30E-07	0	0	0	0	2.94E-10	0	1.05E-08
ILLRW [kg]	1.65E-03	7.97E-06	1.83E-04	0	0	0	2.02E-02	9.18E-03	9.18E-04	0	0	0	0	2.47E-07	0	9.38E-06
CRU [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MR [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MER [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE [MJ]	2.23E-01	0	1.50E-01	0	0	0	4.11E+00	1.87E+00	1.87E-01	0	0	0	0	0	0	0

Stolit® Lotusan® Freeform Dark Colors

The LCIA results presented below are for 1 m² of Stolit Lotusan Freeform Dark Colors for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Cate- gory	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	В5	В6	В7	C1	C2	C3	C4
							IPO	CC AR5								
GWP [kg CO ₂ eq]	3.75E+00	3.12E-01	1.33E+00	0	0	0	5.92E+01	2.69E+01	2.69E+00	0	0	0	0	1.02E-02	0	9.02E-02
						TRA	.CI LCIA Impa	cts (North A	lmerica)							
AP [kg SO ₂ eq]	1.65E-02	1.53E-03	3.59E-03	0	0	0	2.38E-01	1.08E-01	1.08E-02	0	0	0	0	3.04E-05	0	4.65E-04
EP [kg N eq]	4.01E-01	2.51E-02	1.76E-01	0	0	0	6.63E+00	3.01E+00	3.01E-01	0	0	0	0	8.27E-04	0	5.17E-03
ODP [kg CFC 11 eq]	5.54E-11	7.95E-16	5.60E-12	0	0	0	6.71E-10	3.05E-10	3.05E-11	0	0	0	0	2.62E-17	0	4.31E-15
SFP [kg O₃ eq]	2.21E-01	3.53E-02	3.67E-01	0	0	0	6.85E+00	3.11E+00	3.11E-01	0	0	0	0	6.94E-04	0	8.49E-03
							CML 20	01-Jan 2016								
ADPF [MJ]	6.99E+01	4.30E+00	3.00E+01	0	0	0		5.21E+02		0	0	0	0	1.42E-01	0	1.36E+00
						(Carbon Emiss	sions and Up	otake							
BCRP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCRK [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEK [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEW [kg CO₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCE [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CWNR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The LCI results presented below are for 1 m² of Stolit Lotusan Freeform Dark Colors for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Category	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	С3	C4
							Resourc	e Use Indica	itors							
RPR _E [MJ]	1.42E+01	1.73E-01	2.75E+00	0	0	0	1.88E+02	8.55E+01	8.55E+00	0	0	0	0	5.70E-03	0	1.64E-01
RPR _M [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRPR _E [MJ]	6.31E+01	4.34E+00	3.09E+00	0	0	0	7.76E+02	3.53E+02	3.53E+01	0	0	0	0	1.43E-01	0	1.40E+00
NRPR _M [MJ]	6.86E+00	0	1.40E+01	0	0	0	2.29E+02	1.04E+02	1.04E+01	0	0	0	0	0	0	0
SM [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RE [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW [m ³]	3.17E-02	5.92E-04	8.42E-03	0	0	0	4.47E-01	2.03E-01	2.03E-02	0	0	0	0	1.95E-05	0	1.74E-04
						C	utput Flows	and Waste	Categories							
HWD [kg]	1.94E-09	1.25E-11	-8.39E-	0	0	0	1.22E-08	5.55E-09	5.55E-10	0	0	0	0	4.11E-13	0	3.50E-11
NHWD [kg]	6.71E-01	3.77E-04	5.98E-01	0	0	0	1.40E+01	6.35E+00	6.35E-01	0	0	0	0	1.25E-05	0	4.20E+00
HLRW [kg]	2.44E-06	1.48E-08	3.82E-07	0	0	0	3.12E-05	1.42E-05	1.42E-06	0	0	0	0	4.87E-10	0	1.74E-08
ILLRW [kg]	2.44E-03	1.24E-05	3.74E-04	0	0	0	3.11E-02	1.42E-02	1.42E-03	0	0	0	0	4.10E-07	0	1.55E-05
CRU [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MR [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MER [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE [MJ]	3.79E-02	0	2.04E-01	0	0	0	2.66E+00	1.21E+00	1.21E-01	0	0	0	0	0	0	0

Stolit® Lotusan® Freeform

The LCIA results presented below are for 1 m² of Stolit Lotusan Freeform for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

THE LENT	counts pres	CITICA DCIO	w arc for 1	111 01 3101	iit Lotasaii	11001111	i ioi oo yeai	3. THI CC III	Ctime Scen	arios are p	rescrited	ioi illoudi	c or repli	acement (b4	7.	
Impact Cate- gory	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	В5	В6	В7	C1	C2	C3	C4
							IPO	CC AR5								
GWP [kg CO ₂ eq]	3.81E+00	3.12E-01	7.28E-01	0	0	0	5.34E+01	2.43E+01	2.43E+00	0	0	0	0	9.64E-03	0	8.49E-02
						TRA	CI LCIA Impa	cts (North A	merica)							
AP [kg SO ₂ eq]	2.21E-02	1.53E-03	2.93E-03	0	0	0	2.92E-01	1.33E-01	1.33E-02	0	0	0	0	2.86E-05	0	4.38E-04
EP [kg N eq]	3.92E-01	2.51E-02	8.45E-02	0	0	0	5.52E+00	2.51E+00	2.51E-01	0	0	0	0	7.79E-04	0	4.87E-03
ODP [kg CFC 11 eq]	5.29E-11	7.95E-16	5.31E-12	0	0	0	6.41E-10	2.91E-10	2.91E-11	0	0	0	0	2.47E-17	0	4.06E-15
SFP [kg O₃ eq]	2.07E-01	3.53E-02	3.57E-01	0	0	0	6.60E+00	3.00E+00	3.00E-01	0	0	0	0	6.53E-04	0	7.99E-03
							CML 200	01-Jan 2016								
ADPF [MJ]	6.86E+01	4.30E+00	1.40E+01	0	0	0	9.56E+02	4.34E+02	4.34E+01	0	0	0	0	1.34E-01	0	1.28E+00
						(Carbon Emiss	sions and Up	take							
BCRP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEP [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCRK [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEK [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BCEW [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCE [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CCR [kg CO ₂]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CWNR [kg CO ₂]	1.53E-01	0	1.53E-02	0	0	0	1.85E+00	8.41E-01	8.41E-02	0	0	0	0	0	0	0

The LCI results presented below are for 1 m² of Stolit Lotusan Freeform for 60 years. Three lifetime scenarios are presented for module of replacement (B4).

Impact Category	A1-A3	A4	A5	B1	B2	В3	Design Life B4	Market- Based Life B4	System Based B4	B5	В6	В7	C1	C2	С3	C4
							Resourc	e Use Indica	itors							
RPR _E [MJ]	1.40E+01	1.73E-01	1.79E+00	0	0	0	1.76E+02	8.01E+01	8.01E+00	0	0	0	0	5.37E-03	0	1.55E-01
RPR _M [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRPR _E [MJ]	6.24E+01	4.34E+00	5.58E+00	0	0	0	7.96E+02	3.62E+02	3.62E+01	0	0	0	0	1.35E-01	0	1.32E+00
NRPR _M [MJ]	6.60E+00	-	4.58E+00	0	0	0	1.23E+02	5.59E+01	5.59E+00	0	0	0	0	0	0	0
SM [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NRSF [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RE [MJ]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FW [m ³]	3.24E-02	5.92E-04	4.88E-03	0	0	0	4.17E-01	1.89E-01	1.89E-02	0	0	0	0	1.84E-05	0	1.64E-04
						C	utput Flows	and Waste	Categories							
HWD [kg]	1.95E-09	1.25E-11	-1.05E-	0	0	0	2.05E-08	9.30E-09	9.30E-10	0	0	0	0	3.87E-13	0	3.30E-11
NHWD [kg]	8.69E-01	3.77E-04	6.14E-01	0	0	0	1.63E+01	7.42E+00	7.42E-01	0	0	0	0	1.17E-05	0	3.95E+00
HLRW [kg]	2.49E-06	1.48E-08	2.77E-07	0	0	0	3.06E-05	1.39E-05	1.39E-06	0	0	0	0	4.58E-10	0	1.63E-08
ILLRW [kg]	2.48E-03	1.24E-05	2.76E-04	0	0	0	3.05E-02	1.39E-02	1.39E-03	0	0	0	0	3.86E-07	0	1.46E-05
CRU [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MR [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MER [kg]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EE [MJ]	3.48E-01	0	2.35E-01	0	0	0	6.41E+00	2.91E+00	2.91E-01	0	0	0	0	0	0	0

Interpretation

For all the products in study, the majority of the environmental impacts come from the Product Stage, which includes raw material sourcing, transportation and manufacturing. The only exception is SFP whose dominant source is Use & Maintenance Stage because of VOC emission in the curing process. From a functional unit perspective, the lifetime of the product and the coverage rate play a major role in scaling the impacts. This explains why products of coarse finishes have a higher impact than those of fine finishes.

>>

Reference

- Life Cycle Assessment, LCA report for Sto Corp. WAP Sustainability, August 2024
- BTY Group. (2001). Life-cycle Cost Study of Stucco and EIFS Exterior Wall Systems.
- CML Department of Industrial Ecology. (2016, September 05). CML-IA Characterisation Factors. Retrieved from https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors
- Frauenhofer IBP. (2015). Assessing The Long-Term Performance of Applied External Thermal Insulation Composite Systems (ETICs).
- IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
- ISO. (2006). ISO 14025: Environmental labels and declarations Type III environmental declarations Principles and procedures. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14040/Amd 1:2020: Environmental management Life cycle assessment Principles and framework. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14044/Amd 1:2017/Amd 2:2020: Environmental Management Life cycle assessment Requirements and Guidelines. Geneva: International Organization for Standardization.
- ISO. (2017). ISO 21930: Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services. Geneva: International Organization for Standardization.
- NSF International. (2017). Product Category Rule for Environmental Product Declarations Architectural Coatings: NAICS 325510 - Extended 12 months per PCRExt 2023-105. Retrieved from NSF.org: https://d2evkimvhatqav.cloudfront.net/documents/PCR-for-Architectural-Coatings-2023-ext.pdf
- Sto SE & Co. KGaA and Sto Scandinavia AB. (2020). ENVIRONMENTAL PRODUCT DECLARATION: StoVentec R. Institut Bauen und Umwelt e.V. (IBU).
- US EPA. (2012). TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Version 2.1 User Guide. Retrieved from https://nepis.epa.gov/Adobe/PDF/P100HN53.pdf
- US EPA. (2020). Advancing Sustainable Materials Management: 2018 Fact Sheet.
- US EPA. (2020). Advancing Sustainable Materials Management: 2018 Fact Sheet. Retrieved from epa.gov: https://www.epa.gov/sites/default/files/2021-01/documents/2018 ff fact sheet dec 2020 fnl 508.pdf

•	US EPA. (2023). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM) Background Chapters. U.S. Environmental Protection Agency Office of Resource Conservation and Recovery.